

Introduction to Mathematical Quantum Theory

Solution to the Exercises

– 24.03.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let \mathcal{H} be an Hilbert space. Let A and B linear operators on \mathcal{H} such that there exists $\alpha \in \mathbb{C} \setminus \{0\}$ such that

$$[A, B] = \alpha \text{id}. \quad (1)$$

Prove that A and B cannot be both bounded.

Hint: Assume both bounded; consider $\|[A, B^n]\|$ and find an absurd.

Proof. Assume that both A and B are bounded operators. Consider for any $n \in \mathbb{N}$ the commutator between A and B^n . We have

$$[A, B^n] = [A, BB^{n-1}] = [A, B]B^{n-1} + B[A, B^{n-1}] = \alpha B^{n-1} + B[A, B^{n-1}].$$

We can then prove by induction that $[A, B^n] = n\alpha B^{n-1}$; indeed if $n = 1$ the statement is trivially true, and if we assume the statement to be true for $n - 1$ we get

$$[A, B^n] = \alpha B^{n-1} + B[A, B^{n-1}] = \alpha B^{n-1} + B((n-1)\alpha B^{n-2}) = n\alpha B^{n-1}.$$

Consider now the norm of the commutator; we get

$$\begin{aligned} \|[A, B^n]\| &= \|AB^n - B^nA\| \leq 2\|A\|\|B^n\| \\ &\leq \|A\|\|B\|^n. \end{aligned}$$

Given that $[A, B] \neq 0$ we can deduce that $\|A\| \neq 0$. We then get that

$$\|B^n\| \geq \frac{\alpha}{2\|A\|} n \|B^{n-1}\| \geq \dots \geq \left(\frac{\alpha}{2\|A\|}\right)^{n-1} n! \|B\| > 0$$

and from this we deduce that for any $n \in \mathbb{N}$ we have $B^n \neq 0$. We then get

$$n|\alpha| \|B^{n-1}\| \leq 2\|A\|\|B^n\| \leq 2\|A\|\|B\|\|B^{n-1}\| \implies n|\alpha| \leq \|A\|\|B\|.$$

Given that the last inequality holds for any n this gives us a contradiction.

□

Exercise 2

a Prove that for any $\alpha \in \mathbb{C}$ such that $\operatorname{Re}(\alpha) > 0$,

$$\left(\int_{\mathbb{R}} e^{-\frac{x^2}{2\alpha}} dx \right)^2 = \int_{\mathbb{R}^2} e^{-\frac{x^2+y^2}{2\alpha}} dx dy \quad (2)$$

$$= 2\pi\alpha, \quad (3)$$

where the integral over \mathbb{R}^2 can be evaluated using polar coordinates. Deduce that

$$\int_{\mathbb{R}} e^{-\frac{x^2}{2\alpha}} dx = \sqrt{2\pi\alpha}, \quad (4)$$

where the square root is the one with positive real part.

b For all $B \geq A > 0$ and $\alpha \in \mathbb{C} \setminus \{0\}$ we have

$$\int_A^B e^{-\frac{x^2}{2\alpha}} dx = -\frac{\alpha}{x} e^{-\frac{x^2}{2\alpha}} \Big|_A^B - \int_A^B \frac{\alpha}{x^2} e^{-\frac{x^2}{2\alpha}} dx. \quad (5)$$

Using this, prove that the integral in (4) is convergent for all nonzero α with $\operatorname{Re}(\alpha) \geq 0$, provided the integral is interpreted as a principle value when not absolutely convergent, where the principal value is defined as

$$\operatorname{PV} \int_{\mathbb{R}} f(x) dx := \lim_{R \rightarrow \infty} \int_{-R}^R f(x) dx. \quad (6)$$

c Prove that the result of **a** is also valid for nonzero values of α with $\operatorname{Re}(\alpha) = 0$, at least in the principal value.

Hint: Given $\eta \neq 0$, show that the principal value from A to $+\infty$ of $\exp\left[-\frac{x^2}{2(\gamma+i\eta)}\right]$ is small for large A , uniformly in $\gamma \in [0, 1]$.

d Prove that

$$\frac{1}{2\pi} \operatorname{PV} \int_{\mathbb{R}} e^{ikx} e^{-i\frac{\hbar t}{2m}k^2} dk = \sqrt{\frac{m}{2\pi i\hbar t}} e^{i\frac{m}{2\hbar t}x^2}, \quad (7)$$

where the square root is the one with real positive part.

Proof. We start by proving point **a**. Using polar coordinates we get

$$\left(\int_{\mathbb{R}} e^{-\frac{x^2}{2\alpha}} dx \right)^2 = \int_{\mathbb{R}^2} e^{-\frac{x^2+y^2}{2\alpha}} dx dy = 2\pi \int_0^{+\infty} e^{-\frac{\rho^2}{2\alpha}} \rho d\rho = -2\pi\alpha e^{-\frac{\rho^2}{2\alpha}} \Big|_0^{+\infty} = 2\pi\alpha.$$

To recover the integral we want is enough to apply the square root, and given that for real values of α the integral we get is positive, we choose the positive determination of the square root to get

$$\int_{\mathbb{R}} e^{-\frac{x^2}{2\alpha}} dx = \sqrt{2\pi\alpha}.$$

To prove **b** we first use (5) to estimate the principal value. Fix $A > 0$; then we get

$$\begin{aligned} \text{PV} \int_{\mathbb{R}} e^{-\frac{x^2}{2\alpha}} dx &= \lim_{R \rightarrow +\infty} \int_{-R}^R e^{-\frac{x^2}{2\alpha}} dx = \int_{-A}^A e^{-\frac{x^2}{2\alpha}} dx + 2 \lim_{R \rightarrow +\infty} \int_A^R e^{-\frac{x^2}{2\alpha}} dx \\ &= \int_{-A}^A e^{-\frac{x^2}{2\alpha}} dx + 2 \lim_{R \rightarrow +\infty} \left[-\frac{\alpha}{x} e^{-\frac{x^2}{2\alpha}} \Big|_A^R - \int_A^R \frac{\alpha}{x^2} e^{-\frac{x^2}{2\alpha}} dx \right] \\ &= \int_{-A}^A e^{-\frac{x^2}{2\alpha}} dx + 2 \lim_{R \rightarrow +\infty} \left[-\frac{\alpha}{R} e^{-\frac{R^2}{2\alpha}} + \frac{\alpha}{A} e^{-\frac{A^2}{2\alpha}} - \int_A^R \frac{\alpha}{x^2} e^{-\frac{x^2}{2\alpha}} dx \right]. \end{aligned}$$

Now using that $\text{Re}(\alpha) \geq 0$ we have that

$$\left| e^{-\frac{R^2}{2\alpha}} \right| \leq e^{-\text{Re}\left(\frac{R^2}{2\alpha}\right)} \leq 1, \quad \left| \frac{1}{x^2} e^{-\frac{R^2}{2\alpha}} \right| \in L^1(A, +\infty)$$

and applying this to the limit we get that

$$\text{PV} \int_{\mathbb{R}} e^{-\frac{x^2}{2\alpha}} dx = \int_{-A}^A e^{-\frac{x^2}{2\alpha}} dx + \frac{2\alpha}{A} e^{-\frac{A^2}{2\alpha}} - \int_A^{+\infty} \frac{2\alpha}{x^2} e^{-\frac{x^2}{2\alpha}} dx,$$

and therefore the integral is convergent for any α with $\text{Re}(\alpha) \geq 0$.

To prove **c** is enough to consider $\alpha = i\eta$ with $\eta \in \mathbb{R} \setminus \{0\}$. In this case we get

$$\begin{aligned} \text{PV} \int_{\mathbb{R}} e^{i\frac{x^2}{2\eta}} dx &= \lim_{R \rightarrow +\infty} \int_{-R}^R e^{i\frac{x^2}{2\eta}} dx = \lim_{R \rightarrow +\infty} \int_{-R}^R \lim_{\gamma \rightarrow 0^+} e^{-\frac{x^2}{2(\gamma+i\eta)}} dx \\ &= \lim_{R \rightarrow +\infty} \lim_{\gamma \rightarrow 0^+} \int_{-R}^R e^{-\frac{x^2}{2(\gamma+i\eta)}} dx, \end{aligned}$$

where in the last equality we could bring the limit outside of the integral because the integrand is uniformly bounded in modulus by 1 which is integrable in $[-R, R]$. From the formula above and from the fact that now $\text{Re}(\gamma + i\eta) > 0$ we now have that

$$\int_{-R}^R e^{-\frac{x^2}{2(\gamma+i\eta)}} dx = \sqrt{2\pi(\gamma + i\eta)} - 2 \int_R^{+\infty} e^{-\frac{x^2}{2(\gamma+i\eta)}} dx.$$

Moreover we can assume that $\gamma \in [0, 1]$ and use **b** to get that

$$\begin{aligned} \left| \int_R^{+\infty} e^{-\frac{x^2}{2(\gamma+i\eta)}} dx \right| &= \lim_{L \rightarrow +\infty} \left| \int_R^L e^{-\frac{x^2}{2(\gamma+i\eta)}} dx \right| \\ &= \lim_{L \rightarrow +\infty} \left| -\frac{\gamma + i\eta}{L} e^{-\frac{L^2}{2(\gamma+i\eta)}} + \frac{\gamma + i\eta}{R} e^{-\frac{R^2}{2(\gamma+i\eta)}} - \int_R^L \frac{\gamma + i\eta}{x^2} e^{-\frac{x^2}{2(\gamma+i\eta)}} dx \right| \\ &= \left| \frac{\gamma + i\eta}{R} e^{-\frac{R^2}{2(\gamma+i\eta)}} - \int_R^{+\infty} \frac{\gamma + i\eta}{x^2} e^{-\frac{x^2}{2(\gamma+i\eta)}} dx \right| \\ &\leq \frac{4}{R} |\gamma + i\eta| e^{-\frac{R^2}{2} \text{Re}\left(\frac{1}{\gamma+i\eta}\right)} \leq \frac{4\sqrt{1+\eta^2}}{R}, \end{aligned}$$

and therefore, passing to the limit we get

$$\left| \lim_{R \rightarrow +\infty} \lim_{\gamma \rightarrow 0^+} \int_R^{+\infty} e^{-\frac{x^2}{2(\gamma+i\eta)}} dx \right| \leq \lim_{R \rightarrow +\infty} \lim_{\gamma \rightarrow 0^+} \frac{4\sqrt{1+\eta^2}}{R} = 0.$$

As a consequence we get that

$$\text{PV} \int_{\mathbb{R}} e^{i \frac{x^2}{2\eta}} dx = \lim_{R \rightarrow +\infty} \lim_{\gamma \rightarrow 0^+} \sqrt{2\pi(\gamma + i\eta)} = \sqrt{2\pi i\eta},$$

which concludes the proof of **c**.

To prove **d** we first notice that

$$\frac{\hbar t}{2m} k^2 - kx = \frac{\hbar t}{2m} \left(k - \frac{mx}{\hbar t} \right)^2 - \frac{mx^2}{2\hbar t}.$$

Using **c** we then get

$$\begin{aligned} \frac{1}{2\pi} \text{PV} \int_{\mathbb{R}} e^{ikx} e^{-i \frac{\hbar t}{2m} k^2} dk &= \frac{e^{i \frac{m}{2\hbar t} x^2}}{2\pi} \text{PV} \int_{\mathbb{R}} e^{-i \frac{\hbar t}{2m} k^2} dk \\ &= \sqrt{\frac{m}{2\pi i\hbar t}} e^{i \frac{m}{2\hbar t} x^2}, \end{aligned}$$

which concludes our proof. \square

Exercise 3

Consider a separable Hilbert space \mathcal{H} and a complete orthonormal system for it $\{\varphi_n\}_{n \in \mathbb{N}}$. Assume that φ_∞ cannot be written as a finite linear combination of elements of $\{\varphi_n\}_{n \in \mathbb{N}}$. Let D denote the dense linear subspace of \mathcal{H} consisting of all finite linear combinations of elements of $\{\varphi_n\}_{n \in \mathbb{N}}$ and of φ_∞ . On D define the operator $T : D \rightarrow \mathcal{H}$ defined as

$$T \left(\alpha_\infty \varphi_\infty + \sum_{n \in \mathbb{N}} \alpha_n \varphi_n \right) := \alpha_\infty \varphi_\infty. \quad (8)$$

Prove that T is not bounded.

Hint: Use the closed graph theorem.

Proof. Suppose that T is bounded. Given that D is dense in \mathcal{H} , we can define \tilde{T} an extension of T to \mathcal{H} . Consider now the graph of \tilde{T} ; given that $\{\varphi_n\}_{n \in \mathbb{N}}$ is a complete orthonormal system there exists a sequence $\{\beta_n\}_{n \in \mathbb{N}}$ such that

$$\lim_{N \rightarrow +\infty} \sum_{n=0}^N \beta_n \varphi_n = \varphi_\infty.$$

Recall the definition of $G(\tilde{T}) := \{(\psi, \tilde{T}\psi) \mid \psi \in \mathcal{H}\} \subseteq \mathcal{H} \times \mathcal{H}$. Given that we have that

$$T \left(\sum_{n=0}^N \beta_n \varphi_n \right) = 0,$$

we get that $(\sum_{n=0}^N \beta_n \varphi_n, 0) \in G(\tilde{T})$, and as a consequence $(\varphi_\infty, 0) \in \overline{G(\tilde{T})}$. On the other hand, by definition of T we get that $T\varphi_\infty = \varphi_\infty$, and therefore that $(\varphi_\infty, 0) \notin G(\tilde{T})$. For this reason we get that $G(\tilde{T}) \neq \overline{G(\tilde{T})}$. On the other hand \tilde{T} is trivially linear on \mathcal{H} , so we can apply the closed graph theorem to imply that T cannot be bounded.

□

Exercise 4

Recall the definition of $H^2(\mathbb{R})$ as

$$H^2(\mathbb{R}) := \left\{ \psi \in L^2(\mathbb{R}) \mid k^2 \hat{\psi} \in L^2(\mathbb{R}) \right\}$$

Recall that in class we defined the map that to any initial datum $\psi_0 \in L^2(\mathbb{R})$ would associate $\psi_t := \tilde{U}_0(t) \psi_0$, defined via the Hamiltonian $H_0 := -\frac{\partial^2}{\partial x^2}$ with domain $\mathcal{D}(H_0) = H^2(\mathbb{R})$. Indeed if $U_0(t) \psi_0$ is defined for any $\psi_0 \in \mathcal{S}(\mathbb{R})$ as the unique solution to

$$\begin{cases} i\hbar \partial_t (U_0(t) \psi_0) = H_0 U_0(t) \psi_0 \\ U_0(t) \psi_0|_{t=0} = \psi_0, \end{cases} \quad (9)$$

then $\tilde{U}_0(t)$ is defined by density on the whole space $L^2(\mathbb{R})$, and coincides with $U_0(t)$ on $\mathcal{S}(\mathbb{R})$.

Prove that if $\psi_0 \in \mathcal{D}(H_0)$ then $\psi_t \in \mathcal{D}(H_0)$.

Proof. We saw in class that $\tilde{U}_0(t)$ has an explicit form; indeed for any $\psi_0 \in L^2(\mathbb{R})$ we get that

$$\mathcal{F}(\tilde{U}_0(t) \psi_0)(k) = e^{-i \frac{\hbar t}{2m} k^2} \hat{\psi}_0(x),$$

where \mathcal{F} indicates the Fourier transform operator

Now, if $\psi_0 \in H^2(\mathbb{R})$, we get by definition that $k^2 \psi_0 \in L^2(\mathbb{R})$. As a consequence we also get $k^2 \mathcal{F}(\tilde{U}_0(t) \psi_0) \in L^2(\mathbb{R})$, and therefore $\tilde{U}_0(t) \psi_0 \in H^2(\mathbb{R})$.

□