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Exercise 1

Let H be an Hilbert space. Let A and B linear operators on H such that there exists
α P Cz t0u such that

rA,Bs “ α id . (1)

Prove that A and B cannot be both bounded.

Hint: Assume both bounded; consider }rA,Bns} and find an absurd.

Proof. Assume that both A and B are bounded operators. Consider for any n P N the
commutator between A and Bn. We have

rA,Bns “
“

A,BBn´1
‰

“ rA,BsBn´1 `B
“

A,Bn´1
‰

“ αBn´1 `B
“

A,Bn´1
‰

.

We can then prove by induction that rA,Bns “ nαBn´1; indeed if n “ 1 the statement
is trivially true, and if we assume the statement to be true for n´ 1 we get

rA,Bns “ αBn´1 `B
“

A,Bn´1
‰

“ αBn´1 `B
`

pn´ 1qαBn´2
˘

“ nαBn´1.

Consider now the norm of the commutator; we get

}rA,Bns} “ }ABn ´BnA} ď 2 }A} }Bn}

ď }A} }B}n .

Given that rA,Bs ‰ 0 we can deduce that }A} ‰ 0. We then get that

}Bn} ě
α

2 }A}
n
›

›Bn´1
›

› ě . . . ě

ˆ

α

2 }A}

˙n´1

n! }B} ą 0

and from this we deduce that for any n P N we have Bn ‰ 0. We then get

n |α|
›

›Bn´1
›

› ď 2 }A} }Bn} ď 2 }A} }B}
›

›Bn´1
›

› ùñ n |α| ď }A} }B} .

Given that the last inequality holds for any n this gives us a contradiction.
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Exercise 2

a Prove that for any α P C such that Re pαq ą 0,

ˆ
ż

R
e´

x2

2αdx

˙2

“

ż

R2

e´
x2`y2

2α dxdy (2)

“ 2πα, (3)

where the integral over R2 can be evaluated using polar coordinates. Deduce that

ż

R
e´

x2

2αdx “
?

2πα, (4)

where the square root is the one with positive real part.

b For all B ě A ą 0 and α P Cz t0u we have

ż B

A
e´

x2

2αdx “ ´
α

x
e´

x2

2α

ˇ

ˇ

ˇ

ˇ

B

A

´

ż B

A

α

x2
e´

x2

2αdx. (5)

Using this, prove that the integral in (4) is convergent for all nonzero α with Re pαq ě
0, provided the integral is interpreted as a principle value when not absolutely
convergent, where the principal value is defined as

PV

ż

R
f pxq dx :“ lim

RÑ8

ż R

´R
f pxq dx. (6)

c Prove that the result of a is also valid for nonzero values of α with Re pαq “ 0, at
least in the principal value.

Hint: Given η ‰ 0, show that the principal value from A to `8 of exp
”

´ x2

2pγ`iηq

ı

is small for large A, uniformly in γ P r0, 1s.

d Prove that
1

2π
PV

ż

R
eikxe´i

~t
2m

k2dk “

c

m

2πi~t
ei

m
2~tx

2
, (7)

where the square root is the one with real positive part.

Proof. We start by proving point a. Using polar coordinates we get

ˆ
ż

R
e´

x2

2αdx

˙2

“

ż

R2

e´
x2`y2

2α dxdy “ 2π

ż `8

0
e´

ρ2

2α ρdρ “ ´ 2παe´
ρ2

2α

ˇ

ˇ

ˇ

ˇ

`8

0

“ 2πα.

To recover the integral we want is enough to apply the square root, and given that for
real values of α the integral we get is positive, we choose the positive determination of
the square root to get

ż

R
e´

x2

2αdx “
?

2πα.
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To prove b we first use (5) to estimate the principal value. Fix A ą 0; then we get

PV

ż

R
e´

x2

2αdx “ lim
RÑ`8

ż R

´R
e´

x2

2αdx “

ż A

´A
e´

x2

2αdx` 2 lim
RÑ`8

ż R

A
e´

x2

2αdx

“

ż A

´A
e´

x2

2αdx` 2 lim
RÑ`8

«

´
α

x
e´

x2

2α

ˇ

ˇ

ˇ

ˇ

R

A

´

ż R

A

α

x2
e´

x2

2αdx

ff

“

ż A

´A
e´

x2

2αdx` 2 lim
RÑ`8

„

´
α

R
e´

R2

2α `
α

A
e´

A2

2α ´

ż R

A

α

x2
e´

x2

2αdx



.

Now using that Re pαq ě 0 we have that

ˇ

ˇ

ˇ

ˇ

e´
R2

2α

ˇ

ˇ

ˇ

ˇ

ď e
´Re

´

R2

2α

¯

ď 1,

ˇ

ˇ

ˇ

ˇ

1

x2
e´

R2

2α

ˇ

ˇ

ˇ

ˇ

P L1 pA,`8q

and applying this to the limit we get that

PV

ż

R
e´

x2

2αdx “

ż A

´A
e´

x2

2αdx`
2α

A
e´

A2

2α ´

ż `8

A

2α

x2
e´

x2

2αdx,

and therefore the integral is convergent for any α with Re pαq ě 0.

To prove c is enough to consider α “ iη with η P Rz t0u. In this case we get

PV

ż

R
e
ix

2

2η dx “ lim
RÑ`8

ż R

´R
e
ix

2

2η dx “ lim
RÑ`8

ż R

´R
lim
γÑ0`

e
´ x2

2pγ`iηqdx

“ lim
RÑ`8

lim
γÑ0`

ż R

´R
e
´ x2

2pγ`iηqdx,

where in the last equality we could bring the limit outside of the integral because the
integrand is uniformly bounded in modulus by 1 which is integrable in r´R,Rs. From the
formula above and from the fact that now Re pγ ` iηq ą 0 we now have that

ż R

´R
e
´ x2

2pγ`iηqdx “
a

2π pγ ` iηq ´ 2

ż `8

R
e
´ x2

2pγ`iηqdx.

Moreover we can assume that γ P r0, 1s and use b to get that

ˇ

ˇ

ˇ

ˇ

ż `8

R
e
´ x2

2pγ`iηqdx

ˇ

ˇ

ˇ

ˇ

“ lim
LÑ`8

ˇ

ˇ

ˇ

ˇ

ż L

R
e
´ x2

2pγ`iηqdx

ˇ

ˇ

ˇ

ˇ

“ lim
LÑ`8

ˇ

ˇ

ˇ

ˇ

´
γ ` iη

L
e
´ L2

2pγ`iηq `
γ ` iη

R
e
´ R2

2pγ`iηq ´

ż L

R

γ ` iη

x2
e
´ x2

2pγ`iηqdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

γ ` iη

R
e
´ R2

2pγ`iηq ´

ż `8

R

γ ` iη

x2
e
´ x2

2pγ`iηqdx

ˇ

ˇ

ˇ

ˇ

ď
4

R
|γ ` iη| e

´R2

2
Re

´

1
γ`iη

¯

ď
4
a

1` η2

R
,

and therefore, passing to the limit we get

ˇ

ˇ

ˇ

ˇ

lim
RÑ`8

lim
γÑ0`

ż `8

R
e
´ x2

2pγ`iηqdx

ˇ

ˇ

ˇ

ˇ

ď lim
RÑ`8

lim
γÑ0`

4
a

1` η2

R
“ 0.
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As a consequence we get that

PV

ż

R
e
ix

2

2η dx “ lim
RÑ`8

lim
γÑ0`

a

2π pγ ` iηq “
a

2πiη,

which concludes the proof of c.

To prove d we first notice that

~t
2m

k2 ´ kx “
~t
2m

´

k ´
mx

~t

¯2
´
mx2

2~t
.

Using c we then get

1

2π
PV

ż

R
eikxe´i

~t
2m

k2dk “
ei

m
2~tx

2

2π
PV

ż

R
e´i

~t
2m

k2dk

“

c

m

2πi~t
ei

m
2~tx

2
,

which concludes our proof.

Exercise 3

Consider a separable Hilbert space H and a complete orthonormal system for it tϕnunPN.
Assume that ϕ8 cannot be written as a finite linear combination of elements of tϕnunPN.
Let D denote the dense linear subspace of H consisting of all finite linear combinations
of elements of tϕnunPN and of ϕ8. On D define the operator T : D Ñ H defined as

T

˜

α8ϕ8 `
ÿ

nPN
αnϕn

¸

:“ α8ϕ8. (8)

Prove that T is not bounded.

Hint: Use the closed graph theorem.

Proof. Suppose that T is bounded. Given that D is dense in H, we can define rT an
extension of T to H. Consider now the graph of rT ; given that tϕnunPN is a complete
orthonormal system there exists a sequence tβnunPN such that

lim
NÑ`8

N
ÿ

n“0

βnϕn “ ϕ8.

Recall the definition of G
´

rT
¯

:“
!´

ψ, rTψ
¯

| ψ P H
)

Ď HˆH. Given that we have that

T

˜

N
ÿ

n“0

βnϕn

¸

“ 0,
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we get that
´

řN
n“0 βnϕn, 0

¯

P G
´

rT
¯

, and as a consequence pϕ8, 0q P G
´

rT
¯

. On the other

hand, by definition of T we get that Tϕ8 “ ϕ8, and therefore that pϕ8, 0q R G
´

rT
¯

. For

this reason we get that G
´

rT
¯

‰ G
´

rT
¯

. On the other hand rT is trivially linear on H, so

we can apply the closed graph theorem to imply that T cannot be bounded.

Exercise 4

Recall the definition of H2 pRq as

H2 pRq :“
!

ψ P L2 pRq | k2 pψ P L2 pRq
)

Recall that in class we defined the map that to any initial datum ψ0 P L
2 pRq would

associate ψt :“ rU0 ptqψ0, defined via the Hamiltonian H0 :“ ´ B2

Bx2
with domain D pH0q “

H2 pRq. Indeed if U0 ptqψ0 is defined for any ψ0 P S pRq as the unique solution to

"

i~Bt pU0 ptqψ0q “ H0U0 ptqψ0

U0 ptqψ0|t“0 “ ψ0,
(9)

then rU0 ptq is defined by density on the whole space L2 pRq, and coincides with U0 ptq on
S pRq.

Prove that if ψ0 P D pH0q then ψt P D pH0q.

Proof. We saw in class that rU0 ptq has an explicit form; indeed for any ψ0 P L
2 pRq we get

thet
F
´

rU0 ptqψ0

¯

pkq “ e´i
~t
2m

k2
pψ0 pxq ,

where F indicates the Fourier transform operator

Now, if ψ0 P H
2 pRq, we get by definition that k2ψ0 P L

2 pRq. As a consequence we also

get k2F
´

rU0 ptqψ0

¯

P L2 pRq, and therefore rU0 ptqψ0 P H
2 pRq.
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