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Exercise 1

Let H be an Hilbert space. Let A and B linear operators on H such that there exists
a € C\ {0} such that
[A, B] = aid. (1)

Prove that A and B cannot be both bounded.

Hint: Assume both bounded; consider |[A, B™]| and find an absurd.

Proof. Assume that both A and B are bounded operators. Consider for any n € N the
commutator between A and B". We have

[A,B"] = [A,BB" | =[A,B]B" '+ B[A,B" | =aB" ' + B[A,B"'].

We can then prove by induction that [A4, B"] = naB"!; indeed if n = 1 the statement
is trivially true, and if we assume the statement to be true for n — 1 we get

[A,B"] =aB" '+ B[A,B" | =aB" '+ B((n—1)aB"?) =naB" .

Consider now the norm of the commutator; we get

I[A, B"]| = [AB" — B"A| < 2| A] | B"|
< |AlIBI"-

Given that [A, B] # 0 we can deduce that |A| # 0. We then get that

n—1
@ @
IB"| = ——n|B" ! >...> () n!|B| >0
pay” 15 21A]
and from this we deduce that for any n € N we have B™ # 0. We then get

nlal[B"7H < 2 AN|B"| < 2|Al B [B"| = nlal <]A]|B].

Given that the last inequality holds for any n this gives us a contradiction.



Exercise 2

a Prove that for any a € C such that Re (a) > 0,
22 2 22442
<f e_2adx> =J e " dzdy (2)
R R2
=27, (3)

where the integral over R2 can be evaluated using polar coordinates. Deduce that
z2
J e 2adr =V2ra, (4)
R

where the square root is the one with positive real part.

b For all B> A > 0 and « € C\ {0} we have

B2 a _a?
e 2adr = — —e 2a
A X

B B 2
- J %e_%dx. (5)
A

A

Using this, prove that the integral in (4) is convergent for all nonzero o with Re («) >
0, provided the integral is interpreted as a principle value when not absolutely
convergent, where the principal value is defined as

R
PVJ f(z)dx = lim J f(z)dx. (6)
R R—w J_R
c Prove that the result of a is also valid for nonzero values of a with Re (o) = 0, at

least in the principal value.

Hint: Given n # 0, show that the principal value from A to 400 of exp [_2(7967422?7)]

is small for large A, uniformly in v € [0,1].

d Prove that

2w 2miht

where the square root is the one with real positive part.

1Pvf L S S (7)
R

Proof. We start by proving point a. Using polar coordinates we get

22 2 22142 +00 2 2
(J e2adx> = f e e dxdy = 27rj efgfapdp = — 2nae e
R RR2 0

To recover the integral we want is enough to apply the square root, and given that for
real values of a the integral we get is positive, we choose the positive determination of
the square root to get

400
= 271,

0

2
P
J e 2adr =21
R



To prove b we first use (5) to estimate the principal value. Fix A > 0; then we get

PV | e 2adx = lim e 2adr = e 2adx+ 2 lim e 2adx
R R—+w J_p _A R—+00 J4

A 2 2 |R R 2
_zZ . Q _z® [N
:J e 20dr+2 lim |[— —e 2a —f —e 20 dx
A AT

_A R—+00 xT

A 2 2 2 R 2

_z . a _R% a A7 oz

= e 20dr+2 lim |——e 22 + —e 22 — —e€ 2adx | .
_A R+ | R A AT

Now using that Re () = 0 we have that

1 _r?
—e 2«
1‘2

e L' (A, +o0)

and applying this to the limit we get that

PVJ e 2adx = J e 2odx + 9 e —J —O;e_%da:,
R —A A A x
and therefore the integral is convergent for any o with Re («) = 0.

To prove c is enough to consider a = in with 1 € R\ {0}. In this case we get

22 R 2 R 22
PVJ e'2dr = lim e'2ndr = lim lim e 206+ dx
R R—+0 —R R—+ —R 'y—>0+
R 22
= lim lim e 20+ d,

R—+o0 'y—>0+ —R

where in the last equality we could bring the limit outside of the integral because the
integrand is uniformly bounded in modulus by 1 which is integrable in [—R, R]. From the
formula above and from the fact that now Re (v + in) > 0 we now have that

R 22 +00 )
f e 20Fmdr = /21 (v +in) — QJ e 20+ dg.
—R R

Moreover we can assume that v € [0,1] and use b to get that

+00 2 L 22
f e 20+ dg| = lim f e 2(v+in) dx
in __1r%2 _ in __R? L in __ 2
= lim —ue 2(y+in) —i—ue 2(v+in) — ue 2(v+in) dox
; R2 +a0 ; 2
— |2 + Zne_ 2(y+in) — J t zne_ pIGE=TY dz
R i
4 . —R—QRe 1 44/1 + 772
< ph+ine 2 (%) < \/?7

and therefore, passing to the limit we get

too g2 44/1 + n?
lim lim e 20+imdr| < lim lim VT 0.
R—+0w0~y—0+ JR R—+00y—0t R




As a consequence we get that

2
PV | e'Zndr = lim lim /27 (y+i 2min,
fR Rl lim, V2 (v + i) = /2min

which concludes the proof of c.

To prove d we first notice that

2

— k% — kx )
2ht
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Using ¢ we then get

1ij‘ e’ikmefi%dek _ e 2ht VJ 7@*]@2
T R
= lﬁf ,
27rzht

which concludes our proof.

Exercise 3

Consider a separable Hilbert space H and a complete orthonormal system for it {¢y}, -
Assume that ¢, cannot be written as a finite linear combination of elements of {¢y,},, -
Let D denote the dense linear subspace of H consisting of all finite linear combinations
of elements of {¢y}, .y and of . On D define the operator T': D — H defined as

T <Oloo§000 + Z an90n> = OppPoo- (8)

neN

Prove that T is not bounded.

Hint: Use the closed graph theorem.

Proof. Suppose that T' is bounded. Given that D is dense in H, we can define T an
extension of T' to H. Consider now the graph of T'; given that {¢,}, .y is a complete
orthonormal system there exists a sequence {/3,}, .y such that

N
Nl—i»r-r:oo nZ::O Bnpn = poo
Recall the definition of G (f’) - {@ f’@b) E H} < H x H. Given that we have that

N
T (Z Bn@n) = Oa
n=0

4



we get that <Z7]1V:0 Brn®n, O) eqG (f), and as a consequence (¢4,0) € G (f) On the other
hand, by definition of T we get that T, = o, and therefore that (¢4, 0) ¢ G <7~“ > For

this reason we get that G <f> #G <f> On the other hand 7' is trivially linear on H, so
we can apply the closed graph theorem to imply that T cannot be bounded.

O]

Exercise 4

Recall the definition of H? (R) as
H? (R) := {¢ e L (R)| k%) e L2 (R)}

Recall that in class we defined the map that to any initial datum o € L?(R) would
associate ¥, := Uy (t) 1o, defined via the Hamiltonian Hy := —% with domain D (Hy) =
H? (R). Indeed if Uy (t) 1o is defined for any 1y € S (R) as the unique solution to

{ ihdy (Uo (t) vo) = HoUy () Yo (9)

Uo (t) ¥ol,—o = Yo,

then Up (t) is defined by density on the whole space L? (R), and coincides with Up (t) on
S (R).

Prove that if ¢9 € D (Hy) then ¢y € D (Hp).

Proof. We saw in class that Uy (t) has an explicit form; indeed for any 1y € L? (R) we get
thet

F(To (1) o) (k) = ™355 (a),
where F indicates the Fourier transform operator

Now, if 19 € H? (R), we get by definition that k%¢ € L? (R). As a consequence we also
get k2F ((70 (t) 1/;0) e L2 (R), and therefore U (t) 1o € H2 (R).



